@ktunotes.in . "
P> Google Play

K1y
NOTES

NOT=S

The learning companion.

KTU STUDY MATERIALS | SYLLABUS | LIVE
NOTIFICATIONS | SOLVED QUESTION PAPERS

@ Website: www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Netes

MODULE III
PROGRAMMING AND INTERFACING OF 8051

3.1 SIMPLE PROGRAMMING EXAMPLES IN ASSEMBLY LANGUAGE
ASSEMBLER DIRECTIVES.

Assembler directives tell the assembler to do something other than creating the machine code
for an instruction. In assembly language programming, the assembler directives instruct the
assembler to

1. Process subsequent assembly language instructions

2. Define program constants

3. Reserve space for variables

The following are the widely used 8051 assembler directives.

ORG (origin)

The ORG directive is used to indicate the starting address. It can be used only when the
program counter needs to be changed. The number that comes after ORG can be either in hex

or in decimal.
Eg: ORG 0000H ; Set PC to 0000.

EQU and SET

EQU and SET directives assign numerical value or register name to the specified symbol
name.

EQU is used to define a constant without storing information in the memory. The symbol
defined with EQU should not be redefined.

SET directive allows redefinition of symbols at a later stage.
DB (DEFINE BYTE)

The DB directive is used to define an 8 bit data. DB directive initializes memory with 8 bit
values. The numbers can be in decimal, binary, hex or in ASCII formats. For decimal, the 'D’
after the decimal number is optional, but for binary and hexadecimal, 'B' and ‘H’ are required.
For ASCI], the number is written in quotation marks (‘LIKE This).

DATA1: DB 40H ; hex
DATA2: DB 01011100B ;binary
DATA3: DB 48 ; decimal
DATA4: DB 'HELLOW ; ASCII

END

The END directive signals the end of the assembly module. It indicates the end of the program
to the assembler. Any text in the assembly file that appears after the END directive is ignored.
If the END statement is missing, the assembler will generate an error message

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad |1

IOWNLOADED FROM KT

=
=
=
S

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Nates

3.2 ASSEMBLY LANGUAGE PROGRAMS.

1. Write a program to add the values of locations 50H and 51H and store the resultin

locationsin 52h and 53H.

ORG 0000H ; Set program counter 0000H

MOV A,50H ; Load the contents of Memory location 50H into
ADD A,51H ; Add the contents of memory 51H with CONTENTS A
MOV 52H,A ; Save the LS byte of the result in 52H

MOV A, #00 ; Load O0H into A

ADDCA, #00 ; Add the immediate data and carry to A

MOV 53H,A ; Save the MS byte of the result in location 53h

END

2. Write a program to store data FFH into RAM memory locations 50H to 58H
using directaddressing mode

ORG 0000H ; Set program counter 0000H

MOV A, #0FFH ; Load FFH into A

MOV 50H, A ; Store contents of A in location 50H
MOV 51H, A ; Store contents of A in location 5IH
MOV 52H, A ; Store contents of A in location 52H
MOV 53H, A ; Store contents of A in location 53H
MOV 54H, A ; Store contents of A in location 54H
MOV 55H, A ; Store contents of A in location 55H
MOV 56H, A ; Store contents of A in location 56H
MOV 57H, A ; Store contents of A in location 57H
MOV 58H, A ; Store contents of A in location 58H
END

3. Write a program to subtract a 16 bit number stored atlocations 51H-52H from 55H-
56H and store the result in locations 40H and 41H. Assume that the least significant
byte of data or theresult is stored in low address. If the result is positive, then store
00H, else store 01H in 42H.

ORG 0000H ; Set program counter 0000H

MOV A,55H ; Load the contents of memory location 55 into A
CLRC ; Clear the borrow flag

SUBBA,51H ; Sub the contents of memory 51H from contents of A
MOV 40H, A ; Save the LS Byte of the result in location 40H

MOV A,56H ; Load the contents of memory location 56H into A
SUBB A, 52H ; Subtract the content of memory 52H from the content A
MOV A, 41H, ; Save the MS byte of the result in location 41H.

MOV A, #00 ;Load 00 into A

ADDC A, #00 ; Add the immediate data and the carry flag to A
MOV 42H,A ;Ifresultis positive, store00H, else store 0IH in 42H
END

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad |2

)OWNLOADED FROM

=
—
=
S
~
o
%

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Nates

4. Write a program to add two 16 bit numbers stored at locations 51H-52H and 55H-56H
and store the result in locations 40H, 41H and 42H. Assume that the least significant
byte of data and the result is stored in low address and the most significant byte of
data or the resultis stored in high address.

ORG 0000H ; Set program counter 0000H

MOV A,51H ; Load the contents of memory location 51H into A
ADD A,55H ; Add the contents of 55H with contents of A
MOV 40H,A ; Save the LS byte of the result in location 40H
MOV A,52H ; Load the contents of 52H into A

ADDC A,56H ; Add the contents of 56H and CY flag with A
MOV 41H,A ; Save the second byte of the resultin 41H
MOV A,#00 ; Load O0H into A

ADDC A,#00 ; Add the immediate data O0OH and CY to A
MOV 42H,A ; Save the MS byte of the result in location 42H
END

5. Write a program to store data FFH into RAM memory locations 50H to 58H using
indirect addressing mode.

ORG 0000H ; Set program counter 0000H
MOV A, #0FFH ; Load FFH into A
MOV RO, #50H ; Load pointer, RO-50H
MOV R5, #08H ; Load counter, R5-08H
Start:MOV @RO, A ; Copy contents of A to RAM pointed by RO
INC RO ; Increment pointer
DJNZ R5, start ; Repeat until R5 is zero
END

6. Write a program to add two Binary Coded Decimal (BCD) numbers stored at
locations 60H and 61H and store the result in BCD at memory locations 52H and
53H. Assume that the least significant byte of the result is stored in low address.

ORG 0000H ; Set program counter 00004

MOV A,60H ; Load the contents of memory location 60H into A

ADD A,61H ; Add the contents of memory location 61H with contents of A
DAA ; Decimal adjustment of the sum in A

MOV 52H,A ;Savetheleastsignificant byte of the resultinlocation 52H

MOV A,#00 ; Load O0H into .A

ADDCA#00H ; Add theimmediate data and the contents of carry flag to A
MOV 53H,A ; Save the most significant byte of the result in location 53H
END

7. Write a program to clear 10 RAM locations starting at RAM address 1000H.

ORG 0000H ;Set program counter 0000H
MOV DPTR, #1000H ;Copy address 1000H to DPTR
CLRA ;Clear A
MOV R6, #0AH ;Load 0AH to R6
again: MOVX @DPTR,A ;Clear RAM location pointed by DPTR
INCDPTR ;Increment DPTR
DJNZ R6, again ;Loop until counter R6=0
END
Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad |3

DOWNLOADED FROM KTUNOTES.IN

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Nates

8.

Write a program to compute 1 + 2 + 3 + N (say N=15) and save the sum at70H

ORG 0000H ; Set program counter 0000H

N EQU 15

MOV RO,#00 ; Clear RO

CLR A ; Clear A

again: INC RO ; Increment RO

ADD A, RO ; Add the contents of RO with A
CJNE RO,# N,again ; Loop until counter, RO, N
MOV 70H,A ; Save the result in location 70H
END

Write a program to multiply two 8 bit numbers stored at locations 70H and 71H and store the
result at memory locations 52H and 53H. Assume that the least significant byte of the result is
stored in low address.

ORG 0000H ; Set program counter 00 OH
MOV A, 70H ; Load the contents of memory location 70h into A
MOV B, 71H ; Load the contents of memory location 71H into B

MUL AB ; Perform multiplication

MOV 52H,A ; Save the least significant byte of the result in location 52H
MOV 53H,B ; Save the mostsignificant byte of the result in location 53
END

10. Ten 8 bit numbers are stored in internal data memory from location 50H. Write
a program to increment the data.
Assume that ten 8 bit numbers are stored in internal data memory from location
50H, henceR0 or R1 must be used as a pointer.

The program is as follows.

OPT 0000H
MOV RO,#50H
MOV R3,#0AH
Loopl: INC @RO
INC RO

DJNZ R3, loop
END

11. Write a program to find the average of five 8 bit numbers. Store the result in H.
(Assume that after adding five 8 bit numbers, the result is 8 bit only).

ORG 0000H
MOV 40H,#05H
MOV 41H,#55H
MOV 42H,#06H
MOV 43H,#1AH
MOV 44H,#09H
MOV RO,#40H
MOV R5,#05H
MOV B,R5CLR A
Loop: ADD A,@RO
INCRO

DJNZ R5,Loop
DIV AB

MOV 55H,A
END

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad | 4

DOWNLOADED FROM KTUNOTES.IN

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens

Lecture Netes

12. Write a program to find the cube of an 8 bit number program is as follows

ORG 0000H
MOV R1,#N
MOV AR1
MOV B,R1
MUL AB
MOV B, R1
MUL AB
MOV 50,A
MOV 51,B
MOV AR2
MOV B,R1
MUL AB
ADD A, 51H
MOV 51H, A
MOV 52H, B
MOVA, #00H
ADDCA, 52H
MOV 52H, A
END

//SQUARE IS COMPUTEDMOV R2, B

//CUBEIS STORED IN 52H,51H,50H

13. Write a program to exchange the lower nibble of data present in external memory

6000H and6001H
ORG 0000H ; Setprogramcounter 00h
MOV DPTR, #6000H ; Copy address 6000H to DPTR
MOVX A, @DPTR ; Copycontents of 6000H to A
MOV RO, #45H ; Loadpointer, RO=45H
MOV @RO, A ; Copy cont of A to RAM pointed by RO
INC DPL ;Increment pointer

MOVX A, @DPTR
XCHD A, @RO

d by RO

MOVX @DPTR, A

DEC DPL

MOV A, @RO
MOVX @DPTR, A

END

; Copy contents of 6001H to A
; Exchangelower nibble of A with RAM pointe

; Copycontents of Ato 6001H

;Decrementpointer
; Copy cont of RAM pointed by RO to A
; Copy cont of A to RAM pointed by DPTR

14. Write a program to count the number of and o's of 8 bit data stored in location 6000H.

ORG 00008

MOV DPTR, #6000h
MOVX A, @DPTR

)OWNLOADED FROM

; Set program counter 00008
; Copy address 6000H to DPTR
; Copy number to A

MOV RO,#08 ; Copy 08 in RO
MOV R2,#00 ; Copy 00 in R2
MOV R3,#00 ; Copy 00 in R3
CLR C ; Clear carry flag
BACK: RLC A ; Rotate A through carry flag
JC NEXT ; If CF = 1, branch to next
INC R2 ; IfCF=0,increment R2
AJMP NEXT2
NEXT: INC R3 ;IfCF=1,incrementR3
NEXT2: DJNZ RO,BACK ; Repeatuntil ROis zero
END
Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad |5

>~
—
=

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Netes

15. Write a program to shift a 24 bit number stored at 57H-55H to the left logically four

places.Assume that the least significant byte of data is stored in lower address.

ORG 0000H ; Set program counter 0000h
MOV R1,#04 ; Set up loop count to 4

again: MOV A,55H ; Place the least significant byte of data in A
CLRC ; Clear tne carry flag
RLCA ; Rotate contents of A (55h) left through carry
MOV 55H,A
MOV A,56H
RLCA ; Rotate contents of A (56H) left through carry
MOV 56H,A
MOV A,57H
RLCA ; Rotate contents of A (57H) left through carry
MOV 57H,A

DJNZ R1,again ; Repeatuntil R1 is zero
END

3.3 INTERFACING WITH 8051 USING ASSEMBLY LANGUAGE PROGRAMMING:

LED INTERFACING TO 8051

Blinking 1 LED using 8051

This is the first project regarding 8051 and of course one of the simplest, blinking LED using
8051. The microcontroller used here is AT89S51 In the circuit, push button switch S1,
capacitor C3 and resistor R3 forms the reset circuitry. When S1 is pressed, voltage at the
reset pin (pin9) goes high and this resets the chip. C1, C2 and X1 are related to the on chip
oscillator which produces the required clock frequency. P1.0 (pin1) is selected as the output
pin. When P1.0 goes high the transistor Q1 is forward biased and LED goes ON. When P1.0
goes low the transistor goes to cut off and the LED extinguishes. The transistor driver circuit
for the LED can be avoided and the LED can be connected directly to the P1.0 pin with a
series current limiting resistor(~1K). The time for which P1l.0 goes high and low (time
period of the LED) is determined by the program. The circuit diagram for blinking 1 LED is

shown below.

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad | 6

OWNLOADED FROM KTUNOT

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Netes

+oV +5V +oV +oV

I
F 1 EA Voo

™ 1ouFrov R2

g 280 ohm
RST

R3

(B}
8.2K c1 LED
ATES351

N

;R
= (P10} My

_|C1 191 4 Q1

BCS48
33pF X1
C12MHZ
cz
18
Lo Tl

33pF GND

Program

START: CPL P1.0
ACALL WAIT
SJMP START
WAIT: MOV R4,#05H
WAIT1: MOV R3,#00H
WAIT2: MOV R2,#00H
WAIT3: DJNZ R2,WAIT3
DJNZ R3,WAIT2
DJNZ R4,WAIT1
RET

Blinking 2 LED alternatively using 8051.

This circuit can blink two LEDs alternatively. P1.0 and P1.1 are assigned as the outputs.
When P1.0 goes high P1.0 goes low and vice versa and the LEDs follow the state of the
corresponding port to which it is connected. Here there is no driver stage for the LEDs and

they are connected directly to the corresponding ports through series current limiting

resistors (R1 & R2). Circuit diagram is shown below.

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad |7

DOWNLOADED FROM KTUNOT

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Nates

+aV +5V +5V

l_‘-;. C3
F

51-|

™ 10uFrov EA Vee

RST

3 ’ R1
(P10} —"WWh
8. 2K o1 1K

ATBISS1 LED

1 19 R2
[—s X1 (P1.1) EEAANN,

|
33pF %1 1K
I 12MHE

iy
c2 e’

33pF GND

1y

LED

'y

Program

START: CPL P1.0
ACALL WAIT
CPL P1.0
CPLP1.1
ACALL WAIT
CPLP1.1
SJMP START
WAIT: MOV R4,#05H
WAIT1: MOV R3,#FFH
WAIT2: MOV R2,#FFH
WAIT3: DJNZ R2,WAIT3
DJNZ R3,WAIT2
DJNZ R4,WAIT1
RET

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad | 8

DOWNLOADED FROM

=
—
=
S
~
o
%

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Netes

INTERFACING 7 SEGMENT DISPLAY TO 8051.

A NOTE ABOUT 7 SEGMENT LED DISPLAY.

This article is about how to interface a seven segment LED display to an 8051
microcontroller. 7 segment LED display is very popular and it can display digits from 0 to 9
and quite a few characters like A, b, G, ., H, E, e, F, n, o,t,uy, etc. Knowledge about how to
interface a seven segment display to a micro controller is very essential in designing
embedded systems. A seven segment display consists of seven LEDs arranged in the form of
a squarish ‘8’ slightly inclined to the right and a single LED as the dot character. Different
characters can be displayed by selectively glowing the required LED segments. Seven
segment displays are of two types, common cathode and common anode. In common
cathode type , the cathode of all LEDs are tied together to a single terminal which is usually
labeled as ‘com’ and the anode of all LEDs are left alone as individual pins labeled as a, b, c,
d, e f, g& h (or dot) . In common anode type, the anode of all LEDs are tied together as a
single terminal and cathodes are left alone as individual pins. The pin out scheme and
picture of a typical 7 segment LED display is shown in the image below.

g fcoma b

e dcom c dot

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad |9

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Netes

Digit drive pattern.

Digit drive pattern of a seven segment LED display is simply the different logic combinations
of its terminals ‘@’ to ‘h‘ in order to display different digits and characters. The common

digit drive patterns (0 to 9) of a seven segment display are shown in the table below.

* P17 |p16 |P15 |P14 |P13 |P12 |PL1 |P1LO | *

Character H h H

| f Je Jd Jec |b | a JHEX

(1]

|

0 | | | | | | | |ox3E

| | | | | | |ox06

| | | | | | |0x5B

| | | | | | |ox66

| | | | | | |ox6D

| | | | | | |0x7D

| | | | | | |0x07

| | | | | | |ox7F

|
|
|
|
|
| | | | | | lox4F_|
l
|
|
|
|

O[O0 [|UT [||W]IDN]| =

olo|lollollolollollollolo
Rl llollr|rRr]l~]r]|]lo]lo
R o~ |lollollal|l—
ollrllollrl|llollolalr|ollr
== llofr]|~|oll~|r]|ol|r
[N | TSNS SN U\ | U | U\ | FURNY | el | SN | N
[TS | S |l WY | FSENY | SN | FUNY | SN | U
[|| S | SNy | SN | el | SN | PSRN | e N | SN

| H H H | H |ox6F

The circuit diagram shown is of an AT89S51 microcontroller based 0 to 9 counter which has
a 7 segment LED display interfaced to it in order to display the count. This simple circuit
illustrates two things. How to setup simple 0 to 9 up counter using 8051 and more
importantly how to interface a seven segment LED display to 8051 in order to display a
particular result. The common cathode seven segment display D1 is connected to the Port 1
of the microcontroller (AT89S51) as shown in the circuit diagram. R3 to R10 are current
limiting resistors. S3 is the reset switch and R2,C3 forms a debouncing circuitry. C1, C2 and
X1 are related to the clock circuit. The software part of the project has to do the following

tasks.

e Forma 0 to 9 counter with a predetermined delay (around 1/2 second here).
e Convert the current count into digit drive pattern.
e Putthe current digit drive pattern into a port for displaying.

All the above said tasks are accomplished by the program given below.

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad | 10

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens

Lecture Netes

5V By 5V
3 40
EA Voo
! o
+ c3 Common cathode
=2 + T 10uer1ov —_ qf\‘ seven segment LED display
I % | nst s1|2 R4 [
: — A —— L a
1 RS I Y
P1 2
> R2 —AWAN— -
< 82K . oralt L RE])
. 3 —AAAA——————
ATB9S51 A,
Pra—aA— |
- . .|s ms e
15— — o .
7 RS9 [h
o el s —— [-
g RI1D
—— 19] xraLt PLT A J
33pF X1
= R3 to R10 = 5600hm
czTn.:s&zr.'H: -
. e XTALZ =
33pF GHD
lzn

Interfacing 7 segment display to 8051

PROGRAM.

ORG 000H

START: MOV A,#00001001H

//initial starting address
// initial value of accumulator

MOV B,A
MOV RO,#0AH //Register RO initialized as counter which counts from 10 to
0
LABEL: MOV A,B
INCA
MOV B,A
MOVC A,@A+PC // adds the byte in A to the program counters address
MOV P1,A
ACALL DELAY // calls the delay of the timer
DECRO //Counter RO decremented by 1
MOV ARO // RO moved to accumulator to check if it is zero in next
instruction.
JZ START //Checks accumulator for zero and jumps to START.
Done to check if counting has been finished.
SJMP LABEL
DB 3FH // digit drive pattern for 0
Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad 1

OWNLOADED FROM

KTUNOT

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Netes

DB 06H // digit drive pattern for 1
DB 5BH // digit drive pattern for 2
DB 4FH // digit drive pattern for 3
DB 66H // digit drive pattern for 4
DB 6DH // digit drive pattern for 5
DB 7DH // digit drive pattern for 6
DB 07H // digit drive pattern for 7
DB 7FH // digit drive pattern for 8
DB 6FH // digit drive pattern for 9
DELAY: MOV R4,#05H // subroutine for delay

WAIT1: MOV R3,#FFH
WAIT2: MOV R2,#FFH
WAIT3: DJNZ R2,WAIT3
DJNZ R3,WAIT2

DJNZ R4,WAIT1

RET

END

ABOUT THE PROGRAM.

Instruction MOVC A,@A+PC is the instruction that produces the required digit drive pattern
for the display. Execution of this instruction will add the value in the accumulator A with the
content of the program counter(address of the next instruction) and will move the data
present in the resultant address to A. After this the program resumes from the line after
MOVC A,@A+PC.

In the program, initial value in A is 00001001B. Execution of MOVC A,@A+PC will add
00001001B to the content in PC (address of next instruction). The result will be the
address of label DB 3FH (linel5) and the data present in this address ie 3FH (digit drive
pattern for 0) gets moved into the accumulator. Moving this pattern in the accumulator to
Port 1 will display 0 which is the first count.

At the next count, value in A will advance to 00001010 and after the execution of MOVC
A,@+PC ,the value in A will be 06H which is the digit drive pattern for 1 and this will display
1 which is the next count and this cycle gets repeated for subsequent counts.

The reason why accumulator is loaded with 00001001B (9 in decimal) initially is that the

instructions from line 9 to line 15 consumes 9 bytes in total.

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad |12

OWNLOADED FROM K

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Nates

3.4 PROGRAMMING IN C

Embedded C

For programming the embedded hardware devices, we need to use Embedded C language
instead of our conventional C language.

The key differences between conventional C and Embedded C are

% Embedded C has certain predefined variables for registers, ports etc. which are in
8051 e.g. ACC, P1, P2, TMOD etc.
% We can run super loop (infinite loop) in embedded C language.

We know that the programming in C language is solely done by dealing with different
variables.

In case of Embedded C, these variables are nothing else but the memory locations of
different memories of the microcontroller like code memory (ROM), data memory (RAM),
external memory etc. To use these memory locations as variables, we need to use data types.

Data types
There are 7 different data types in embedded C for 8051...

1) unsigned char
This data type is used to define an unsigned 8-bit variable. All 8-bits of this variable
are used to specify data. Hence the range of this data type is (0)10to (255)10.
e.g. unsigned char count;
2) signed char
This data type is used to define a signed 8-bit variable. Here MSB of variable is used
to show sign (+/-) while rest 7 bits are used to specify the magnitude of the variable.
Hence the range of this data type is (-128)10to (127) 10.
e.g. signed char temp;
3) unsigned int
This data type is used to define a 16-bit variable. Hence from this we can comment
that this data types combines any 2 memory locations of the data memory as one
variable. Here all 16 bits are used to specify data. So the range of this data type is
(0)10to (65535)10.
4) signed int
This data type is used to define a signed variable like signed char but of 16-bit size.
Hence its range is (-32768)10to (32767)10
5) sfr
This is an 8-bit data type used for defining names of Special Function Registers
(SFR’s) that are located in RAM memory locations 80 H to FF H only.
e.g. sfr PO = 0x80;

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad |13

)OWNLOADED FROM KTUNOTES.IN

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Nates

6) bit
This data type is used to access single bits from the bit-addressable area of RAM.
e.g. bit MYBIT = 0x32;
7) sbit
The sbit data type is the one which is used to define or rather access single bits of the
bit addressable SFR’s of 8051 microcontroller.
e.g. sbit En = P2"0;

With these data types in mind, let's take a look at the structure of a program in Embedded C.

DOCUMENTATION/COMMENTARY

Effective coding requires the use of documentation or commentary to indicate any
important details of what the code is doing. An Embedded C program typically begins with
some documentation information like the name of the file, the author, the date that the code
was created, and any specific details about the functioning of the code. Embedded C
supports single-line comments that begin with the characters "//" or multi-line comments

that begin with "/*" and end with "*/" on a subsequent line.

Pre-processor Directives

Pre-processor directives are not normal code statements. They are lines of code that begin
with the character "#" and appear in Embedded C programming before the main function. At
runtime, the compiler looks for pre-processor directives within the code and resolves them
completely before resolving any of the functions within the code itself. Some pre-processor
directives can skip part of the main code based on certain conditions, while others may ask
the pre-processor to replace the directive with information from a separate file before
executing the main code or to behave differently based on the hardware resources available.

Many types of pre-processor directives are available in the Embedded C language.

Global Variable Declaration

Global declarations happen before the main function of the source code. Engineers can
declare global variables that may be called by the main program or any additional functions
or sub-programs within the code. Engineers may also define functions here that will be

accessible anywhere in the code.

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad | 14

)OWNLOADED FROM KTUNOTES.IN

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Nates

Main Program

The main part of the program begins with main(). If the main function is expected to return
an integer value, we would write int main(). If no return is expected, convention dictates
that we should write void main(void).
< Declaration of local variables - Unlike global variables, these ones can only be
called by the function in which they are declared.
< Initializing variables/devices - A portion of code that includes instructions for
initializing variables, I1/0 ports, devices, function registers, and anything else needed
for the program to execute
< Program body - Includes the functions, structures, and operations needed to do

something useful with our embedded system

Subprograms

An embedded C program file is not limited to a single function. Beyond the main() function,
programmers can define additional functions that will execute following the main function

when the code is compiled.

Decision control structures

The decision control structures are used to decide whether to execute a particular block of
code depending on the condition specified. Following are some decision control structures:
% if statement

% if...else statement .) -
if...else statement if(condition)

{

if statement
statement-1; statement-2;
if(condition)
{
}
statement-1; statement-2;
else
{
} .
statement n;
}
Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad |15
DOWNLOADED FROM KTUNOTES.IN

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Nates

Loop statements

The loop statements are the one which are used when we want to execute a certain block of
code for more than one times either depending on situation or by a predefined number of
times.

Embedded C is basically having two loop statements:

% forloop

®,

» while loop

1) forloop
for loops are used to repeat any particular piece of code a predefined number of
times.

for(initializations ; conditions ; updates)

{

statement-1;
statement-2;

2) while loop

while loop also has the provision to repeat a certain block of code but here the block is
repeated depending on the condition specified. The loop keeps on repeating until the
condition becomes false.

Format of while loop is:
while(condition)

{

statement-1;

statement- 2;

Break & Continue Statements
1) break

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad |16

DOWNLOADED FROM KTUNOTES.IN

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Netes

The break statement, whenever is encountered in the loop, it forces the control to terminate the
loop in which it is written.

2) continue

Whenever this statement is encountered in any loop, the statements in the loop after it won’t be
executed i.e. will be skipped and again control will be transferred to check the condition of the loop.

Format of any C Program

#include <reg51h> (N Header File
sbit <name>=<bit address>; _ sfr bit definitions
sfr <name>=<sfr address>; _ sfr definition

Data-type udf1(data-type var_name); _ User defined function

Data-type udf2(data-type var_name);

void main(void) _ main function

{

statement-1;

statement-2;

Functions

Sometimes, there comes a situation in which in a program a group of statements is used
frequently. Writing these statements again & again makes our program clumsy to write as
well as it consumes more memory space. To overcome this problem there is a facility in C
language to define a function. In function we can write the particular group of statements
which is getting repeated continuously. Now anytime when we want to use that code group,
we just have to call the function and it’s done.

Types of functions
4+ No arguments, no return values
4 With no arguments and a return value
4+ With arguments but no return value
4+ With arguments and return value

There are 3 ways to deal with a function:

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad |17

DOWNLOADED FROM KTUNOT

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Nates

«» Define first, then use
% Do prototyping (i.e. Define first, use after main())
% Do prototyping in header file
a) Define first, then use
In this case, before writing the main function, we define the user-defined
function and then use it in main() function whenever required.
b) Do prototyping and define after main function
In this case the function name, data type and argument data type are specified
before writing main function to declare that we'll later implement this
function.
c) Do prototyping in header file
In this case, define the function in a (user defined) header file and then just
include that header file in your program.

Data Types in Embedded C

Data Type Size in Bits Data Range/Usage
unsigned-char 8-bit 0to 255 ;

(signed) char &-bit -128 to +127

unsigned int 16-bit 0 to 65535

(signed) int 16-bit -32768 to +32767

shit 1-bit SFR bit-addressable only

bit 1-bit RAM bit-addressable only

sfr 8-bit RAIM addresses 80 — FFH only

Delay generation in 8051

The delay length in 8051 microcontroller depends on three factors:

The crystal frequency
the number of clock per machine
» the C compiler.

K/ K/
L X X4

DS

The original 8051 used 1/12 of the crystal oscillator frequency as one machine cycle. In
other words, each machine cycle is equal to 12 clocks period of the crystal frequency
connected to X1-X2 pins of 8051. To speed up the 8051, many recent versions of the 8051
have reduced the number of clocks per machine cycle from 12 to four, or even one. The
frequency for the timer is always 1/12th the frequency of the crystal attached to the 8051,
regardless of the 8051 version. In other words, AT89C51, DS5000, and DS89C4x0 the
duration of the time to execute an instruction varies, but they all use 1/12th of the crystal's
oscillator frequency for the clock source.

8051 has two different ways to generate time delay using C programming, regardless of
8051 version.

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad |18

OWNLOADED FROM

~

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Nates

The first method is simply using Loop program function in which Delay() function is
made or by providing for(),; delay loop in Embedded C programming. You can define your
own value of delay and how long you want to display. For example- for(i=0;i<"any decimal
value";i++); this is the delay for loop used in embedded C.

Code to generate 250 ms delay on Port P1 of 8051:

#include "REG52.h"

void MSDelay(unsigned int);

void main()

{

while (1) //repeat forever
{
P1=0x55;
MSDelay(250);
P1=0xAA;
MSDelay(250);
}
}
void MSDelay(unsigned int itime)
{
unsigned int i,j;
for (i=0;i<itime;i++) // thisis For(); loop delay used to define delay value in
Embedded C
{
for (j=0;j<1275;j++);
}
}

The second method is using Timer registers TH, TL and TMOD that are accessible in
embedded C by defining header file reg52.h Both timers 0 and 1 use the same register,
called TMOD (timer mode), to set the various timer operation modes in 8051 C
programming. There are four operating modes of timer 0 and 1.

To generate Time delay using timer registers:

+ Load the TMOD value register indicating which timer (timer 0 or timer 1) is to be
used and which timer mode (0 or 1 is selected)

Load registers TL and TH with initial count value

Start the timer

Keep monitoring the timer flag (TF) until it rolls over from FFFFH to 0000.

After the timer reaches its limit and rolls over, in order to repeat the process - TH and
TL must be reloaded with the original value, and TR is turned off by setting value to 0
and TF must be reloaded to 0.

=+ FF

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad | 19

OQWNLOADED FROM KTUNOTES.IN

http://www.justsharehere.com/archives/4652#timer
http://www.justsharehere.com/archives/4652#timer
http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Netes

oscillator
TF goes high Overflow
CT=0 when FFFF — 0 flag

Code generating delay using timer register:

#include <REG52.h>
void TODelay(void);
void main(void){

while (1)

{

P1=0x55;
TODelay();
P1=0xAA;
TODelay ();
}

}

void TODelay()

{
TMOD=0x01; //timer 0, mode 1

TL0=0x66; //load TLO

THO=0xFC; //load THO

TRO=1; // turn on TimerO

while (TF0==0); // wait for TFO to roll over
TRO=0; // turn off timer

TF0=0; // clear TFO

}

Steps for generating precise Delay using 8051 Timers

In order to produce time delay accurately,
1. Divide the time delay with timer clock period.
NNNN=time delay/1.085us
2. Subtract the resultant value from 65536.
MMMM=65536-NNNN
3. Convert the difference value to the hexa decimal form.
MMMMd = XXYYh

4. Load this value to the timer register.

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad | 20

OWNLOADED FROM

=
=
=
S

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Nates

TH=XXh
TL=YYh

Delay Function to Generate 1 ms Delay
In order to generate a delay of 1ms, the calculations using above steps are as follows.

NNNN = 1ms/1.085us = 922.

MMMM = 65536-922 = 64614
64614 in Hexadecimal = FC66h

Load TH with 0xFC and TL with 0x66

B W e

The following function will generate a delay of 1 ms using 8051 Timer 0.

Void delay ()
{
TMOD =0x01; // Timer 0 Mode 1
THO= 0xFC; //initial value for 1ms
TLO = 0x66;
TRO=1; //timer start
while (TFO0 == 0); // check overflow condition
TRO=0; //Stop Timer
TFO0 =0; // Clear flag

Port programming

1. Write an 8051 C program to send values 00 - FF to port P1.

#include <reg51.h>

void main(void)

{

unsigned char i; for (i=0;i<=255;i++)

P1=i;

}
2. Write an 8051 C program to send the ASCII characters 0of0, 1, 2,3,4,5,A,B,C,and D to
port P1

#include <reg51.h>
void main(void)

{

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad | 21

)OWNLOADED FROM KTUNOTES.IN

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Netes

unsigned char mynum()=“012345ABCD”;
unsigned char i;

for (i=0;i<=10;i++)

P1=mynum(i);

‘

#include <reg51.h>
void main(void)

{

While (1)

{

p1=0x55;
p1=0xAA;

‘

//Singed numbers

#include <reg51.h>

void main(void)

{

char mynum[|={+1,-1,+2,-2,+3,-3,+4,-4};
unsigned char i; for (i=0;i<=8;i++)
P1=mynum]i];

‘

//Singed numbers
#include <reg51.h>
void main(void)

{

char mynum][[;
signed char i;

for (i=-4;i<=4;i++)
P1=mynum]i];

‘

#include <reg51.h>
sbit MYBIT=P170;
void main(void)

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad |22

DOWNLOADED FROM KTUNOTES.IN

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens

Lecture Netes

{

unsigned int z;

for (z=0;z<=50000;z++)
{

MYBIT=0;

MYBIT=1;

}

}

Note: sbit keyword allows access to the single bits of the SFR registers
7. LEDs are connected to bits P1 and P2. Write an 8051 C program that shows the count
from O to FFH (0000 0000 to 1111 1111 in binary) on the LEDs.

#include <reg51.h>
#define LED P2;

void main(void)

{

P1=00; //clear P1
LED=0; //clear P2
while(1)

{

P1++; //increment P1
LED++; //increment P2

}
}

Note: Ports PO - P3 are byte-accessable and we can use the PO - P3 labels as defined in the

8051 header file <reg51.h>

8. Write an 8051 C program to get a byte of data form P1, wait 1/2 second, and then send it to P2.

#include <reg51.h>

void MSDelay(unsigned int);
void main(void)

{

unsigned char mybyte;
P1=0xFF; //make P1 input port
while (1)

{

mybyte=P1; //get a byte from P1
MSDelay(500);

P2=mybyte; //send it to P2

}

}

void MSDelay(unsigned int itime)
{
unsigned int i,j;
for (i=0;i<itime;i++)
for (j=0;j<1275;j++);
}

9. Write an 8051 C program to get a byte of data form PO0. If it is less than 100, send it to P1;

otherwise, send it to P2.

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad

DOWNLOADED FROM

| 23

TUNOTES.IN

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Netes

#include <reg51.h>
void main(void) void MSDelay(unsigned int itime)
{ {

unsigned char mybyte; unsigned int i,j;

P0=0xFF; //make PO input port for (i=0;i<itime;i++) for
while (1) (j=0;j<1275;j++);

{ }

mybyte=P0; //get a byte from PO
if (mybyte<100)

P1=mybyte; //send it to P1

else

P2=mybyte; //send it to P2

}

}

10. Write an 8051 C program to toggle only bit P2.4 continuously without disturbing the rest of the

bits of P2

Note:

//Toggling an individual bit
#include <reg51.h>

sbit mybit=P2"4;

void main(void)

{

while (1)

{

mybit=1; //turn on P2.4
mybit=0; //turn off P2.4

}
}

Ports PO - P3 are bit-addressable and we use sbit data type to access a single
bit of PO - P3

Use the Px"y format, where x is the port 0, 1, 2, or 3 and y is the bit 0 - 7 of
that port

11. Write an 8051 C program to monitor bit P1.5. If it is high, send 55H to P0; otherwise, send AAH

to P2

#include <reg51.h>
sbit mybit=P1/5;
void main(void)
{
mybit=1; //make mybit an input
while (1)
{
if (mybit==1)

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad | 24

DOWNLOADED FROM KTUNOTES.IN

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens

P0=0x55;
else

P2=0xAA;
}
}

Lecture Netes

12. A door sensor is connected to the P1.1 pin, and a buzzer is connected to P1.7. Write an

8051 C program to monitor the door sensor, and when it opens, sound the buzzer. You can

sound the buzzer by sending a square wave of a few hundred Hz.

#include <reg51.h>

void MSDelay(unsigned int);

sbit Dsensor=P171;

sbit Buzzer=P1"7;

void main(void)

{

Dsensor=1; //make P1.1 an input
while (1)

{

while (Dsensor==1)//while it opens
{

Buzzer=0; MSDelay(200);
Buzzer=1; MSDelay(200);

}
}
}

void MSDelay(unsigned int itime)
{
unsigned int i,j;

for (i=0;i<itime;i++) for
(j=0;j<1275;j++);

}

13. Write an 8051 C program to toggle all the bits of PO, P1, and P2 continuously with a 250 ms
delay. Use the sfr keyword to declare the port addresses

sfr P0=0x80;
sfr P1=0x90;
sfr P2=0xA0;
void MSDelay(unsigned int);
void main(void)
{
while (1)
{
P0=0x55;
P1=0x55;
P2=0x55;
MSDelay(250);
P0=0xAA;

void MSDelay(unsigned int itime)
{
unsigned int i,j;
for (i=0;i<itime;i++) for
(j=0;j<1275;j++);
}

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad

DOWNLOADED FROM

TUNOTES.IN

| 25

http://ktunotes.in/
www.ktunotes.in

ECT 206 Cemputer nchitecture Und Microcentrallers Lecture Nates

P1=0xAA;
P2=0xAA;
MSDelay(250);

#include <reg51.h>

#define LCDData P1 //LCDData declaration

sbit En=P270; //the enable pin void main(void)
{

unsigned char message[| =“ECED-JCET”;
unsigned char z;

for (z=0;z<9;z++) //send 9 characters
{

LCDData=message[z];

En=1; //a high-

En=0; //-to-low pulse to latch data

-
-

#include <reg51.h>
sbit MYBIT=0x95;
void main(void)

{
unsigned int z;
for (z=0;z<50000;z++)
{ MYBIT=1; MYBIT=0;
}

}

Note

7

« We can access a single bit of any SFR if we specify the bit address

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad | 26

DOWNLOADED FROM KTUNOTES.IN

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens

Lecture Netes

#include <reg51.h>
sbit wave =P0"0;

void MSDelay(unsigned int itime)

void MSdelay (unsigned int); {

void main(void)
{

wave =1;
MSdelay(3);
wave =0;
MSdelay (5);

}

unsigned int i,j;

for (i=0;i<itime;i++) for
(j=0;j<1275;j++);

}

17.Generate a square wave with ON time 3ms and OFF time 5ms at port 0.Assume crystal
frequency 22MHz, Timer 0 in mode 1.

#include <reg51.h>
sbit wave =P0"0;
void delay3 ();
void delay5 ();
void main(void)

{

wave =1;

delay(3);

wave =0;

delay (5);

Code Conversion Programs

Void delay3 ()
{
TMOD =0x01; // Timer O Mode 1
THO= 0xEA; //initial value for 1ms
TLO = 0x8A;
TRO=1; //timer start
while (TFO0 == 0); // check overflow condition
TRO=0; // Stop Timer
TFO =0; //Clear flag

}
Void delay5 ()

{
TMOD =0x01; // Timer 0 Mode 1

THO= 0xDC; //initial value for 1ms
TLO = 0x3B;
TRO=1; //timer start

while (TFO == 0); // check overflow condition
TRO=0; //Stop Timer
TFO =0; //Clear flag

1. Write an 8051 C program to convert packed BCD 0x29 to ASCII and display the bytes

on P1 and P2.

#include <reg51.h>

void main(void)

{

unsigned char x,y,z;

unsigned char mybyte=0x29;

x=mybyte&0x0F;
P1=x|0x30;

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad

OWNLOADED FROM

TUNOTES.IN

| 27

http://ktunotes.in/
www.ktunotes.in

ECT 206 Cemputer nchitecture Und Microcentrallers Lecture Nates

y=mybyte&0xF0;
y=y>>4;
P2=y|0x30;

‘

#include <reg51.h>
void main(void)

{

unsigned char bcdbyte;
unsigned char w=4’;
unsigned char z='7’;
w=w&0x0F;
w=w<<4;

z=7&0x0F;
bcdbyte=w|z;
P1=bcdbyte;

‘

#include <reg51.h>

void main(void)

{

unsigned char mydata[|={0x25,0x62,0x3F,0x52};
unsigned char sum=0;

unsigned char x;

unsigned char chksumbyte; for (x=0;x<4;x++)
{

P2=mydata[x];

sum=sum+mydata[x];

}

chksumbyte=~sum+1;

P2=chksumbyte;

‘

#include <reg51.h>
void main(void)

{
unsigned char mydata[]={0x25,0x62,0x3F,0x52,0xE8};

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad | 28

DOWNLOADED FROM KTUNOTES.IN

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Nates

unsigned char chksum=0;

unsigned char x;

for (x=0;x<5;x++) chksum=chksum + mydata[x];

if (chksum==0)

P0=‘G’;

else

P0=B’;

}
5. Write an 8051 C program to convert 11111101 (FD hex) to decimal and display the digits
on PO, P1 and P2.

#include <reg51.h>
void main(void)

{

unsigned char x,binbyte,d1,d2,d3;
binbyte=0xFD;
x=binbyte/10;
d1=binbyte%10;
d2=x%10;
d3=x/10;

P0=d1;

P1=d2;

P2=d3;

}

INTERFACING THE KEYBOARD TO 8051 MICROCONTROLLER

The key board here we are interfacing is a matrix keyboard. This key board is designed with
a particular rows and columns. These rows and columns are connected to the
microcontroller through its ports of the micro controller 8051. We normally use 8*8 matrix
key board. So only two ports of 8051 can be easily connected to the rows and columns of the

key board.

When ever a key is pressed, a row and a column gets shorted through that pressed key
and all the other keys are left open. When a key is pressed only a bit in the port goes
high. Which indicates microcontroller that the key is pressed. By this high on the bit key in

the corresponding column is identified.

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad | 29

OWNLOADED FROM

TUNOTES.IN

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Netes

Once we are sure that one of key in the key board is pressed next our aim is to identify
that key. To do this we firstly check for particular row and then we check the corresponding

column the key board.

To check the row of the pressed key in the keyboard, one of the row is made high by
making one of bit in the output port of 8051 high . This is done until the row is found
out. Once we get the row next out job is to find out the column of the pressed key. The
column is detected by contents in the input ports with the help of a counter. The content of

the input port is rotated with carry until the carry bit is set.

The contents of the counter is then compared and displayed in the display. This display

is designed using a seven segment display and a BCD to seven segment decoder IC 7447.

The BCD equivalent number of counter is sent through output part of 8051 displays the

number of pressed key.

KEY PAD s 0 DISPLAY

CONTROLLER

Circuit diagram of INTERFACING KEY BOARD TO 8051.

The programming algorithm, program and the circuit diagram is as follows. Here program is
explained with comments.

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad |30

DOWNLOADED FROM KTUNOTES.IN

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Nates

YI vyl A Ay | P Poo p2ol— ic If =t
o e

NN U Yl 7 A Y R P23 :::‘..

A AAAAAY |7 = 7 Jl; Ve
AN A vl Yl Y A |P° 8051 "

P2.4 '? o

fiep T
P2.7 4 I1°

PORT P1 e s Y

% The 8051 has 4 /0 ports PO to P3 each with 8 1/0 pins, P0.0 to P0.7,P1.0 to P1.7, P2.0
to P2.7, P3.0 to P3.7. The one of the port P1 (it understood that P1 means P1.0 to
P1.7) as an I/P port for microcontroller 8051, port PO as an O/P port of
microcontroller 8051 and port P2 is used for displaying the number of pressed key.
Make all rows of port PO high so that it gives high signal when key is pressed.

See if any key is pressed by scanning the port P1 by checking all columns for non
zero condition.

If any key is pressed, to identify which key is pressed make one row high at a time.
Initiate a counter to hold the count so that each key is counted.

Check port P1 for nonzero condition. If any nonzero number is there in
[accumulator], start column scanning by following step 9.

Otherwise make next row high in port P1.

Add a count of 08h to the counter to move to the next row by repeating steps from
step 6.

% If any key pressed is found, the [accumulator] content is rotated right through the
carry until carry bit sets, while doing this increment the count in the counter till carry
is found.

Move the content in the counter to display in data field or to memory location

» To repeat the procedures go to step 2.

X/
X4

L)

R/
X4

X/ X/ K/
L X X G X4)

X/
X4

L)

K/
X4

D)

X3

7/
X4

L)

DS

Start of main program:
to check that whether any key is pressed

start: mov a,#00h

mov pl,a ;making all rows of port p1 zero

mov a,#0fh

mov pl,a ;making all rows of port p1 high
press: mov a,p2

jz press ;check until any key is pressed

after making sure that any key is pressed

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad | 31

OWNLOADED FROM

=
=
=
S

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Nates

mov a,#01h ;make one row high at a time
mov r4,a
mov r3,#00h ;initiating counter

next: mov a,r4

mov pl,a ;making one row high at a time

mov a,p2 ;taking input from port A

jnz colscan ;after getting the row jump to check
column

mov a,r4

rla ;rotate left to check next row

mov r4,a

mov a,r3

add a,#08h ;increment counter by 08 count

movr3,a

sjmp next ;jump to check next row

after identifying the row to check the column following steps are followed

colscan: mov r5,#00h

in: rrca ;rotate right with carry until get the carry

jcout ;jump on getting carry
incr3 ;increment one count
jmp in

out: mov a,r3
daa ;decimal adjust the contents of counter

before display

mov p2,a

jmp start ;repeat for check next key.

INTERFACING DACTO 8051

The Digital to Analog converter (DAC) is a device, that is widely used for converting digital
pulses to analog signals. There are two methods of converting digital signals to analog
signals. These two methods are binary weighted method and R/2R ladder method. In this
article we will use the MC1408 (DAC0808) Digital to Analog Converter. This chip uses R/2R
ladder method. This method can achieve a much higher degree of precision. DACs are judged
by its resolution. The resolution is a function of the number of binary inputs. The most
common input counts are 8, 10, 12 etc. Number of data inputs decides the resolution of DAC.
So if there are n digital input pin, there are 2" analog levels. So 8 input DAC has 256 discrete
voltage levels.

The MC1408 DAC (or DAC0808)

In this chip the digital inputs are converted to current. The output current is known as lout by
connecting a resistor to the output to convert into voltage. The total current provided by
the lout pin is basically a function of the binary numbers at the input pins Do- D7 (Do is the
LSB and D7 is the MSB) of DAC0808 and the reference current Irer. The following formula is
showing the function of lout

[o=1 <D7+D6+D5+D4+D3+D2+D1+D0)
out = ref \ 2 4 8 16 32 64 128 256

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad | 32

)OWNLOADED FROM KTUNOTES.IN

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Nates

The Ireris the input current. This must be provided into the pin 14. Generally 2.0mA is used
as Iref

We connect the lout pin to the resistor to convert the current to voltage. But in real life it may
cause inaccuracy since the input resistance of the load will also affect the output voltage. So
practically Irercurrent input is isolated by connecting it to an Op-Amp with Rf= 5KQ as
feedback resistor. The feedback resistor value can be changed as per requirement.

Generating Sinewave using DAC and 8051 Microcontroller

For generating sinewave, at first we need a look-up table to represent the magnitude of the
sine value of angles between 0° to 360°. The sine function varies from -1 to +1. In the table
only integer values are applicable for DAC input. In this example we will consider 30°
increments and calculate the values from degree to DAC input. We are assuming full-scale
voltage of 10V for DAC output. We can follow this formula to get the voltage ranges.

Vout = 5V + (5 xsin0)
Let us see the lookup table according to the angle and other parameters for DAC.

Angle(in 0) sin@ Vout (Voltage Values sent to DAC
Magnitude) (Vout* 25.6)

0 0 5 128

30 0.5 7.5 192

60 0.866 9.33 238

90 1.0 10 255
120 0.866 9.33 238
150 0.5 7.5 192
180 0 5 128
210 -0.5 2.5 64
240 -0.866 0.669 17
270 -1.0 0 0
300 -0.866 0.669 17
330 -0.5 2.5 64
360 0 5 128

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad |33

)OWNLOADED FROM KTUNOTES.IN

lenovo
Highlight

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Nates

Circuit Diagram —
+5V +5V
8051 DAC0808 T 5k
RD vVCC
WR Vref (+)
P10 }—»{ DO
(D1 Iour
———» D2 4
1 D3
——» D4 Vref (-)
——» D5
- 5k
P1.7+—» D7
VEE COMP GND|
-L 0.1uF =
-12V
Program

#include<reg51.h>
sfr DAC = 0x80; //Port PO address
void main(){
int sin_value[12] = {128,192,238,255,238,192,128,64,17,0,17,64};
inti;
while(1){
//infinite loop for LED blinking
for(i=0;i<12; i++){
DAC = sin_valueli];

}
}
}
Volts
9__
8__
7__
6_—.
5
il
N
S ;
T IO W)
30 60 90 120 150 180 210 240 270 300 330 360
Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad | 34
DOWNLOADED FROM KTUNOTES.IN

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Netes

INTERFACING ADCTO 8051

An analog to digital converter or ADC, as the name suggests, converts an analog signal to a
digital signal. An analog signal has a continuously changing amplitude with respect to time.
A digital signal, on the contrary, is a stream of Os and 1s. An ADC maps analog signals to their
binary equivalents. To do this, ADCs use various methods like Flash conversion, slope
integration, or successive approximation.

To understand the ADC in a better way, let us look at an example. Let us say we have an
input signal which varies from 0 to 8 volt, and we use a 3-bit ADC to convert this signal to
binary data. A 3-bit ADC can represent 2”3 or 8 different voltage levels using 3 bits of data.
How convenient! In this case, the ADC maps the data in the following manner.

Input voltage Binary equivalent

0-1 volt 000B
1-2 volt 001B
2-3volt 010B
3-4 volt 011B
4-5 volt 100B
5-6 volt 101B
6-7 volt 110B
7-8 volt 111B

If you look at the table above, you will understand how the ADC maps analog data to digital values. In
the case mentioned above, we can see that the tiniest change we can detect is that of 1 volt. If the
change is smaller than 1 volt, the ADC can’t detect it. This minimum change that an ADC can detect is
known as the step size of the ADC. To calculate it, we can use the formula:

Step size=(Vmax-Vmin) /2" (where n is the number of bits(resolution) of an ADC)
The step size of an ADC is inversely proportional to the number of bits of an ADC. So using
an ADC with higher bits can detect smaller changes, but this increases the cost of production.
Due to this reason, most on-chip ADCs’ have an 8-bit/10-bit resolution. Given below is the
resolution vs. step size for various configurations with a range of 0-5v input signal.

Number of bits Number of steps step size(mV)
8 256 5/256=19.53
10 1024 5/1024=4.88
12 4096 5/4096=1.2
16 65536 0.076 (precise conversion)
Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad |35

OWNLOADED FROM KTUNOT

'S.IN

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens

ADC 0808

The ADC 0808 is a popular 8-bit ADC with a step size of 19.53 millivolts. It does not have an
internal clock. Therefore, it requires a clock signal from an external source. It has eight input
pins, but only one of them can be selected at a time because it has eight digital output pins. It
uses the principle of successive approximation for calculating digital values, which is very
accurate for performing 8-bit analog to digital conversions. Let us look at the pin description

to get more insights into ADC 0808.

N —-

Il

INT 7 —p

1l

GND Clock VvcCC

Vref(+)
Vref(-)

ALE
sC

ADC 0808

EOC
OE

»>D0

1l

Input pins (INTO-INT7)

The ADC 0808 has eight input analog pins. These pins are multiplexed together, and only

I

one of them can be selected using three select lines.

Select lines and ALE

It has three select lines, namely A, B, and C, that are used to select the desired input lines.
The ALE pin also needs to be activated by a low to high pulse to select a particular input. The

input lines are selected as follows:

A B

0O 00
0 0 1
0 1 0
0 1 1
100
1 0 1
1 1 0
1 1 1

Output pins (D0-D7)

The ADC has eight output pins that give the binary equivalent of a given analog value.

VCC and Ground

These two pins are used to provide the required voltage to power the microcontroller. In

INTO
INT1
INT2
INT3
INT4
INT5
INT6
INT7

most cases, the ADC uses 5V DC to power up.

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad

C | Selected analog channel

ALE pin
Low to High pulse
Low to High pulse
Low to High pulse
Low to High pulse
Low to High pulse
Low to High pulse
Low to High pulse
Low to High pulse

Lecture Netes

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Netes

Clock
As mentioned earlier, the 0808 does not have an internal clock and needs an external clock
signal to operate. It uses a clock frequency of 20Mhz, and using this clock frequency it can
perform one conversion in 100 microseconds.
VREF (+) and VREF (-)
These two pins are used to provide the upper and the lower limit of voltages which
determine the step size for the conversion. Here Vref(+) has a higher voltage, and Vref(-) has
the lower voltage. If Vref(+) has an input voltage 5v and Vref(-) has a voltage of Ov then the
step size will be 5v-0v/28=15.53 mv.
Start conversion
This pin is used to tell the ADC to start the conversion. When the ADC receives a low to high
pulse on this pin, it starts converting the analog voltage on the selected pin to its 8-bit digital
equivalent.
End of conversion
Once the conversion is complete, the ADC sends low to high signal to tell a microcontroller
that the conversion is complete and that it can extract the data from the 8 data pins.
Output enable
This pin is used to extract the data from the ADC. A microcontroller sends a low to high
pulse to the ADC to extract the data from its data buffers
Interfacing 8051 with 0808
Most modern microcontrollers with 8051 IP cores have an inbuilt ADC. Older versions of
8051 like the MCS-51 and A789C51 do not have an on-chip ADC. Therefore to connect these
microcontrollers to analog sensors like temperature sensors, the microcontroller needs to
be hooked to an ADC. It converts the analog values to digital values, which the
microcontroller can process and understand. Here is how we can interface the 8051 with
0808.

5V

s 1 ADC00009 |

. P25~ AD (OE} VGG
I KTAL1 pag aed WR (SC) Vet i+) il 2 58V
1 LI::Z P10 s oo (i
l_' NTALS - 1 p—
IN2 e
13—
P 1N e
- R
=" N8 f—
- N7
P 1.7 ————— O7 CLOCK
ST praf———i] ALE Vref (-}
BAEE p27le INTR (EOC) g8
A B © GND —
To interface the ADC to 8051, follow these steps.
Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad | 37

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Nates

+*

+*

Connect the oscillator circuit to pins 19 and 20. This includes a crystal oscillator and
two capacitors of 22uF each. Connect them to the pins, as shown in the diagram.
Connect one end of the capacitor to the EA’ pin and the other to the resister. Connect
this resistor to the RST pin, as shown in the diagram.

We are using port 1 as the input port, so we have connected the output ports of the
ADC to port 1.

As mentioned earlier, the 0808 does not have an internal clock; therefore, we have to
connect an external clock. Connect the external clock to pin 10.

Connect Vref (+) to a voltage source according to the step size you need.

Ground Vref (-) and connect the analog sensor to any one of the analog input pins on
the ADC. We have connected a variable resistor to INT2 for getting a variable voltage
at the pin.

Connect ADD A, ADD B, ADD C, and ALE pins to the microcontroller for selecting the
input analog port. We have connected ADD A- P2.0; ADD B- P2.1; ADD C- P2.2 and the
ALE pin to port 2.4.

Connect the control pins Start, OE, and Start to the microcontroller. These pins are
connected as follows in our case Start-Port-2.6; OE-Port-2.5 and EOC-Port-2.7.

Logic to communicate between 8051 and ADC 0808
Several control signals need to be sent to the ADC to extract the required data from it.

+*

+*

*
+*
+*

Step 1: Set the port you connected to the output lines of the ADC as an input port.
You can learn more about the Ports in 8051 here.

Step 2: Make the Port connected to EOC pin high. The reason for doing this is that the
ADC sends a high to low signal when the conversion of data is complete. So this line
needs to be high so that the microcontroller can detect the change.

Step 3: Clear the data lines which are connected to pins ALE, START, and OE as all
these pins require a Low to High pulse to get activated.

Step 4: Select the data lines according to the input port you want to select. To do this,
select the data lines and send a High to Low pulse at the ALE pin to select the address.
Step 5: Now that we have selected the analog input pin, we can tell the ADC to start
the conversion by sending a pulse to the START pin.

Step 6: Wait for the High to low signal by polling the EOC pin.

Step 7: Wait for the signal to get high again.

Step 8: Extract the converted data by sending a High to low signal to the OE pin.

Program

#include <reg51.h>
sbit ALE = P2"4;
sbit OE = P2/5;

sbit SC = P2"6;

sbit EOC = P2/7;
sbit ADDR_A = P270;
sbit ADDR_B = P2"1;
sbit ADDR_C = P2"2;
sfr MYDATA =P1;

sfr SENDDATA =P3;

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad |38

OWNLOADED FROM KTUNOTES.IN

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Nates

void MSDelay(unsighned int) // Function to generate time delay
{
unsighned int i,j;
for(i=0;i<delay;i++)
for(j=0;j<1275;j++);
}
void main()
{
unsigned char value;
MYDATA = 0xFF;
EOC=1;
ALE =0;
OE =0;
SC=0;
while(1)
{
ADDR_C = 0;
ADDR_B = 0;
ADDR_A = 0;
MSDelay(1);
ALE = 1;
MSDelay(1);
SC=1;
MSDelay(1);
ALE = 0;
SC=0;
while(EOC==1);
while(EOC==0);
OE=1;
MSDelay(1);
value = MYDATA;
SENDDATA = value;
OE=0;
}
}

STEPPER MOTOR INTERFACING WITH 8051

Stepper motors are used to translate electrical pulses into mechanical movements. In some
disk drives, dot matrix printers, and some other different places the stepper motors are
used. The main advantage of using the stepper motor is the position control. Stepper motors
generally have a permanent magnet shaft (rotor), and it is surrounded by a stator.

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad | 39

OWNLOADED FROM

=
=
=
S

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Nates

Stator

Normal motor shafts can move freely but the stepper motor shafts move in fixed repeatable
increments.

Some parameters of stepper motors -

4+ Step Angle - The step angle is the angle in which the rotor moves when one pulse is
applied as an input of the stator. This parameter is used to determine the positioning
of a stepper motor.

+ Steps per Revolution - This is the number of step angles required for a complete
revolution. So the formula is 360° /Step Angle.

4+ Steps per Second - This parameter is used to measure a number of steps covered in
each second.

4+ RPM - The RPM is the Revolution Per Minute. It measures the frequency of rotation.
By this parameter, we can measure the number of rotations in one minute.

Interfacing Stepper Motor with 8051 Microcontroller

Weare using Port PO of 8051 for connecting the stepper motor. HereULN2003 is used. This
is basically a high voltage, high current Darlington transistor array. Each ULN2003 has seven
NPN Darlington pairs. It can provide high voltage output with common cathode clamp
diodes for switching inductive loads.

The Unipolar stepper motor works in three modes.

% Wave Drive Mode - In this mode, one coil is energized at a time. So all four coils are
energized one after another. This mode produces less torque than full step drive
mode.

The following table is showing the sequence of input states in different windings.

Steps WindingA WindingB Winding C Winding D
1 1 0 0 0
Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad | 40

OWNLOADED FROM

=
=
=
S

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Netes

Steps WindingA WindingB Winding C Winding D
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1

¢ Full Drive Mode - In this mode, two coils are energized at the same time. This mode
produces more torque. Here the power consumption is also high

The following table is showing the sequence of input states in different windings.

Steps Winding A Winding B Winding C Winding D
1 1 1 0 0
2 0 1 1 0
3 0 0 1 1
4 1 0 0 1

0,

+» Half Drive Mode - In this mode, one and two coils are energized alternately. At first,
one coil is energized then two coils are energized. This is basically a combination of
wave and full drive mode. It increases the angular rotation of the motor

The following table is showing the sequence of input states in different windings.

Steps Winding A Winding B Winding C Winding D
1 1 0 0 0
2 1 1 0 0
3 0 1 0 0
4 0 1 1 0
5 0 0 1 0
6 0 0 1 1
7 0 0 0 1
8 1 0 0 1
Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad | 41
DOWNLOADED FROM KTUNOTES.IN

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Nates

Program

// Wave drive Mode
#include<reg51.h>
void ms_delay(unsigned intt) //To create a delay of 200 ms = 200 x 1ms
{
unsigned i,j ;
for(i=0;i<t;i++) //200 times 1 ms delay
for(j=0;j<1275;j++); //1ms delay
}

void main()

{
while(1) // To repeat infinitely

{
P2=0x08; //P2=0000 1000 First Step
ms_delay(200);
P2=0x04; //P2=0000 0100 Second Step
ms_delay(200);
P2=0x02; //P2=0000 0010 Third Step
ms_delay(200);
P2=0x01; //P2=0000 0001 Fourth Step
ms_delay(200);

}

}
// Full drive Mode

#include<reg51.h>
void ms_delay(unsigned intt) //To create a delay of 200 ms = 200 x 1ms
{
unsigned i,j ;
for(i=0;i<t;i++) //200 times 1 ms delay
for(j=0;j<1275;j++); //1ms delay
}
void main()
{
while(1) // To repeat infinitely
{
P2=0x0C; //P2=0000 1000 First Step
ms_delay(200);
P2=0x06; //P2=0000 0100 Second Step
ms_delay(200);
P2=0x03; //P2 =0000 0010 Third Step
ms_delay(200);
P2=0x09; //P2=0000 0001 Fourth Step
ms_delay(200);
}
}

// Half Drive Mode
#include<reg51.h>
void ms_delay(unsigned intt) //To create a delay of 200 ms = 200 x 1ms
{
unsigned i,j ;
for(i=0;i<t;i++)
for(j=0;j<1275;j++);

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad | 42

OQWNLOADED FROM KTUNOTES.IN

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Netes
}
void main()
{
while (1)
{
P2 = 0x08; //P2 =0000 1000 First Step
ms_delay(200)
P2 = 0x0C; //P2=0000 1100 Second Step
ms_delay(200)
P2 = 0x04; //P2=0000 0100 Third Step
ms_delay(200)
P2 = 0x06; //P2=0000 0110 Fourth Step
ms_delay(200)
P2 = 0x02; //P2 =0000 0010 Fifth Step
ms_delay(200);
P2=0x03; //P2=0000 0011 Sixth Step
ms_delay(200);
P2 = 0x01; //P2=0000 0001 Seventh Step
ms_delay(200);
P2=0x09; //P2=0000 1001 Eight Step
ms_delay(200);
}
}

The circuit diagram is shown below: It uses the full drive mode.

C),’?l«”ﬂ_ WICWI«__"
Qe
R2{] R¥ | R[] RS
4.7 | 47K 474 | 47
U2
U1 k]S
0L yTars Po04Dd 32 & ic 2 Ve
PO.SAD = 28 26— ——(9]
“ Po.2u02 2 T ac)
XTALZ PO3IADS (22 e ac 2
PO.AADS — T. e -7 o] —': -
POSADS bt s 2m 1 e B
; POBIADS |55 —{m |-
el e ULNI003A
=3 P2oms |41
1uF P2AAR 33
2% P22A10 —;;
o F2EA o
s PzaAr2 22
e = N
P2ALe |22
] R1 P2aAs 2=
10
deo P2 0RXD
e PINTND |t
M2 nz#)
= P13 PAIINTY 5e
—Spia Pramo
2 eis B2l 2
——ete P0TE
S E PATIRD |——
— AT0CE1
Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad | 43
DOWNLOADED FROM KTUNOTES.IN

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Nates

LCD INTERFACING WITH 8051 MICROCONTROLLER

Display units are the most important output devices in embedded projects and electronics
products. 16x2 LCD is one of the most used display unit. 16x2 LCD means that there are two
rows in which 16 characters can be displayed per line, and each character takes 5X7 matrix
space on LCD. In this tutorial we are going to connect 16X2 LCD module to the 8051
microcontroller (AT89S52). Interfacing LCD with 8051 microcontroller might look quite
complex to newbies, but after understanding the concept it would look very simple and easy.
Although it may be time taking because you need to understand and connect 16 pins of LCD
to the microcontroller. So first let's understand the 16 pins of LCD module.

We can divide it in five categories, Power Pins, contrast pin, Control Pins, Data pins and
Backlight pins.

Categor Pin Pin Function
gory NO. Name
1 VSS Ground Pin, connected to Ground
Power Pins
VDD or
2 Volt Pin +5V
Vee oltage Pin
Contrast VO or Contrast Setting, connected to Vcc thorough a
. 3 . .
Pin VEE variable resistor.
4 RS Register Select Pin, RS=0 Command
mode, RS=1 Data mode
Control c RW Read/ Write pin, RW=0 Write mode, RW=1
Pins Read mode
6 B Enable, a high to low pulse need to enable the
LCD
Data Pins 714 DO-D7 Data Pins, Stores the]?ata to b.e displayed on
LCD or the command instructions

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad | 44

)OWNLOADED FROM KTUNOTES.IN

https://circuitdigest.com/microcontroller-projects/lcd-interfacing-with-8051-microcontroller-89s52
http://circuitdigest.com/article/16x2-lcd-display-module-pinout-datasheet
http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Netes

LED
15 A tor To power the Backlight +5V
Backlight
Pins
LED-
16 K or Backlight Ground

All the pins are clearly understandable by their name and functions, except the control pins,
so they are explained below:

RS: RS is the register select pin. We need to set it to 1, if we are sending some data to be
displayed on LCD. And we will set it to O if we are sending some command instruction like
clear the screen (hex code 01).

RW: This is Read/write pin, we will set it to 0, if we are going to write some data on LCD.
And set it to 1, if we are reading from LCD module. Generally this is set to 0, because we do
not have need to read data from LCD. Only one instruction “Get LCD status”, need to be read
some times.

E: This pin is used to enable the module when a high to low pulse is given to it. A pulse of
450 ns should be given. That transition from HIGH to LOW makes the module ENABLE.

There are some preset command instructions in LCD, we have used them in our program
below to prepare the LCD (in lcd_init() function). Some important command instructions are
given below:

Hex Code | Command to LCD Instruction Register
OF LCD ON, cursor ON
01 Clear display screen
02 Return home
04 Decrement cursor (shift cursor to left)
06 Increment cursor (shift cursor to right)
05 Shift display right
07 Shift display left
OE Display ON, cursor blinking
Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad | 45
DOWNLOADED FROM KTUNOTES.IN

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Nates

80 Force cursor to beginning of first line
Cco Force cursor to beginning of second line
38 2 lines and 5x7 matrix
83 Cursor line 1 position 3
3C Activate second line
08 Display OFF, cursor OFF
C1 Jump to second line, position 1
0] Display ON, cursor OFF
C1 Jump to second line, position 1
C2 Jump to second line, position 2
LCD1

Cc2
[o
[U1
22pF —L 1 |—19 b XTAL1 POO/ADO [—22
] — PO/AD1 [—2=
_ s PO.2/AD2 2L
L c1 XTAL2 POJAD3 |22
" ¥ | PO.4/AD4 |32
PO.5IADS |
1} CRYSTAL PO.6/ADE |—=
2pF 11,0502 MHz £ 1 Rst PO.7/ADT 2
Qs (f:} P20/A8 21
1 P2.1/A9 [—2
Y R1 I P22/A10 22
2 PsEN P23/Al 22
10k o P24/A12 |22
—o0 EA P25/A13 |22
—re P26iA14 [—2L
L P2.7/A15
;— P1.0/T2 P3.0/RXD %
—<— PiamaEx P3A/TXD f—-
] P1.2 P3.2/INTO 13
4 r13 P3IINTI =
= P14 P3.4TO 2
= P15 P35ST [—2
< Pis P3EWR =
L pi7 P3.7IRD |—L

AT89552
PIN 40 Vee, PIN 20 Ground

Circuit diagram for LCD interfacing with 8051 microcontroller is shown in the above
figure. If you have basic understanding of 8051 then you must know about EA(PIN 31),

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad | 46

~

DOWNLOADED FROM KTUNOTE!

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Nates

XTAL1 & XTALZ2, RST pin(PIN 9), Vcc and Ground Pin of 8051 microcontroller. I have used
these Pins in above circuit.

So besides these above pins we have connected the data pins (D0-D7) of LCD to the Port 2
(P2_0 - P2_7) microcontroller. And control pins RS, RW and E to the pin 12,13,14 (pin 2,3,4
of port 3) of microcontroller respectively.

PIN 2(VDD) and PIN 15(Backlight supply) of LCD are connected to voltage (5v), and PIN 1
(VSS) and PIN 16(Backlight ground) are connected to ground.

Pin 3(V0) is connected to voltage (Vcc) through a variable resistor of 10k to adjust the
contrast of LCD. Middle leg of the variable resistor is connected to PIN 3 and other two legs
are connected to voltage supply and Ground.

Program
// Program for LCD Interfacing with 8051 Microcontroller (AT89S52)

#include<reg51.h>

#define display_port P2 //Data pins connected to port 2 on microcontroller
sbitrs = P372; //RS pin connected to pin 2 of port 3

sbit rw = P373; // RW pin connected to pin 3 of port 3

sbite = P3”74; //E pin connected to pin 4 of port 3

void msdelay(unsigned int time) // Function for creating delay in milliseconds.
{

unsigned i,j ;

for(i=0;i<time;i++)

for(j=0;j<1275;j++);
}
void lcd_cmd(unsigned char command) //Function to send command instruction to LCD
{

display_port = command;

rs=0;

rw=0;

e=1;

msdelay(1);

e=0;
}

void lcd_data(unsigned char disp_data) //Function to send display data to LCD

{
display_port = disp_data;
rs=1;

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad | 47

)OWNLOADED FROM KTUNOTES.IN

http://ktunotes.in/
www.ktunotes.in

ECT 206 Computer (nchitecture Und Micracentrollens Lecture Nates

rw=0;
e=1;
msdelay(1);
e=0;

}

void lcd_init() //Function to prepare the LCD and get it ready
{
lcd_cmd(0x38); // for using 2 lines and 5X7 matrix of LCD
msdelay(10);
lcd_cmd(0x0F); // turn display ON, cursor blinking
msdelay(10);
lcd_cmd(0x01); //clear screen
msdelay(10);
lcd_cmd(0x81); // bring cursor to position 1 of line 1
msdelay(10);
}

void main()
{
unsigned char a[15]="CIRCUIT DIGEST"; //string of 14 characters with a null terminator.
int1=0;
lcd_init();
while(a[l] !="\0") // searching the null terminator in the sentence
{
lcd_data(a[l]);
l++;

msdelay(50);

}
}

Sanish V S ,Assistant Professor,ECE,JCET,Lakkidi,Palakkad | 48

)OWNLOADED FROM KTUNOTES.IN

http://ktunotes.in/
www.ktunotes.in

